忆阻器,是一种基于“记忆”外加电压或电流历史而动态改变其内部电阻状态的电阻开关。由于拥有超小的尺寸,极快的擦写速度,超高的擦写寿命,多阻态开关特性和良好的CMOS兼容性,忆阻器被业内视为可应用在未来存储和类脑计算(神经形态计算)技术的重要候选者。然而,基于传统氧化物材料的忆阻器在高温和承受压力等恶劣环境下,会出现器件的失效,远远无法满足航空航天、军事、石油和天然气勘探等应用中对于电子元件耐热性的需求。因此,寻找新材料和新结构来提升忆阻器在恶劣环境下工作的可靠性成为忆阻器研究的一个重要挑战。
南京大学物理学院缪峰教授课题组近年来围绕二维材料电子器件应用开展了系统的工作,在包括场效应电子器件、红外光电探测器件等领域已取得一系列成果。目前,他们和科研合作团队利用二维层状硫氧化钼(氧化二硫化钼)以及石墨烯构成三明治结构的范德华异质结,在世界上首次实现了基于全二维材料的、可耐受超高温和强应力的高鲁棒性忆阻器,为推动忆阻器在高温电子器件和相关技术领域的应用迈出重要一步。
这项工作选取了硫氧化钼(氧化二硫化钼)和石墨烯分别作为忆阻器的介质层和电极材料,制备了三明治结构的异质结。团队首先利用机械剥离法得到二硫化钼和石墨烯薄膜样品,将二硫化钼薄膜加热氧化后得到硫氧化钼。接着利用二维材料定向转移的工艺,将石墨烯、硫氧化钼、石墨烯堆叠在一起形成具有原子级平整度界面的范德华异质结(图a),如此高质量的界面是基于传统氧化物材料的忆阻器所无法实现的。测试结果显示这种基于全二维材料的异质结能够实现非常稳定的开关:可擦写次数超过千万次(107,图b),擦写速度小于100 ns,并且拥有很好的非挥发性。团队发现该结构的忆阻器能够在高达340℃的温度下稳定工作并且保持良好的开关性能(图c,图d),创下了忆阻器工作温度的新记录(此前发表的最高记录为200℃)。团队利用透射电子显微镜进行原位观察,发现该忆阻器的耐热性来源于硫氧化钼超高的热稳定性,并进一步清楚地揭示了该忆阻器中基于氧离子迁移的工作机制。结果显示,该忆阻器中的导电通道在开关过程中一直被具有超高热稳定性的单晶石墨烯和层状硫氧化钼很好地保护着,保证了导电通道在高温擦写过程中的稳定性。最后,团队将该忆阻器置于柔性衬底聚酰亚胺上,发现器件在大于0.6%的形变应力下伸曲1200次之后同样能够稳定地工作。
《自然·电子学》官网截图与基于二维材料的耐高温忆阻器:(a)器件结构示意图;(b)器件在脉冲电压操作下2×107次的稳定开关表现;(c)器件在20~340℃温度范围内的开关曲线;(d)器件分别在100℃、200℃和300℃高温下的1000次稳定开关表现。
2018年2月5日,该工作以《基于层状二维材料的高鲁棒性忆阻器》(Robust memristors based on layered two-dimensional materials)为题发表在《自然·电子学》杂志上(Nature Electronics DOI:10.1038/s41928-018-0021-4),这也是南京大学在该期刊发表的首篇论文。物理学院博士生王淼和现代工程与应用科学学院博士生蔡嵩骅为论文的共同贡献第一作者,缪峰教授、现代工程与应用科学学院的王鹏教授和马萨诸塞大学的杨建华教授为该论文的共同通讯作者。这项研究工作不仅展示了二维层状材料异质结构在忆阻器领域中的巨大应用前景,对未来极端环境下电子元件的设计与研究有着重要的指导意义;同时也指出,因为二维材料异质结构可以结合不同二维材料的优异性质,也给人们提供了一种解决其它领域电子器件技术挑战的可能的通用途径。
该项研究得到微结构科学与技术协同创新中心的支持,以及国家杰出青年科学基金、科技部“量子调控”国家重大科学研究计划(青年科学家专题)项目、江苏省杰出青年基金、国家自然科学基金等项目的资助。
相关链接:
论文链接:https://www.nature.com/articles/s41928-018-0021-4
作为自然科研品牌旗下近期推出的新期刊,《自然·电子学》(Nature Electronics)面向学术界和工业界,旨在发表电子学领域所涵盖的基础研究和应用研究的最新原创性成果,侧重报道新兴技术的发展及其对社会变革的重大影响。官网:http://www.nature.com/natelectron/。