氦是自然界中最惰性的元素,通常很难与其它物质发生化学反应。近日,来自南京大学和南京微结构协同创新中心的孙建教授和王慧田教授等人,与剑桥大学的研究人员通力合作,利用晶体结构搜索和第一性原理分子动力学模拟等方法预言了氦和水在高压下可形成稳定化合物,并发现这些化合物在高温高压极端条件下会出现多个超离子态。他们的发现将为进一步研究氦的化合物,固体熔化过程和新物态,以及行星内部结构等多个方面提供重要的理论参考。相关研究成果以“Multiple superionic states in helium-water compounds”为题,于2019年7月1日在线发表在《自然•物理》(Nature Physics)上。[DOI: 10.1038/s41567-019-0568-7]
研究背景
超离子态是一种部分固体部分液体的特殊物态,当物体处于这种状态时,物体中的部分原子在其晶格格点附近振动,具有固体状态;而另一部分原子则可以自由地扩散,呈现液体行为。很多物体,特别是水和氨等,在一定的温度和压力条件下都能够出现这种超离子态。早在30多年前,Demontis等人在模拟冰的相图的时候就发现,冰中的氢原子在一定的温度压力条件下就会像液体一样自由扩散,而其中的氧原子仍然呈现固体的状态,只在晶格格点附近振动而不扩散。近年来,对天王星和海王星这类覆盖大量积冰层的天体的物态演化研究是当前人类探索未知天体的重要研究方向。天王星和海王星大气由大量的氢气和氦气组成,而在大气层下,星体90%的体积充斥着由水、氨和甲烷等物质构成的积冰层。1999年,Cavazzoni等人在模拟积冰层温度压力条件时发现,环境压强和温度将随着深度的增加而逐渐升高并接近冰的超离子态的形成条件。也就是说,在天王星和海王星这类行星的内部,很可能存在着超离子态的冰。
另一方面,虽然氦是自然界中最惰性的元素,通常很难与其它物质发生化学反应,但近年来的研究表明,在高压下,氦的化学性质会发生显著变化,可以跟某些物质形成化合物。比如,有研究人员发现,氦和水在300GPa的高压下会发生反应。但是作为宇宙中丰度最高的物质之一,氦会对积冰层中的物态演化有何影响,目前还是人类认知的空白。
- 氦-水化合物的稳定性和晶体结构
基于这样的背景,孙建教授的课题组用自行开发的基于机器学习加速的晶体结构搜索方法和第一性原理计算,对氦和水在高压下的化合物,以及他们在高温高压下的物态进行了系统研究,得到了一系列令人惊奇的理论结果。他们预言,当压强升高到2到92 GPa之间,氦和水就可以发生反应并形成稳定的化合物,如不同化学配比的HeH2O 和He2H2O等。(见图1)其中He2H2O存在两种对称性:低压下的I41md和高压下的Fd-3m,这两种相之间的相变压强在55GPa左右。他们还发现的氦-水化合物中冰的子晶格与纯的冰VIII和冰X相具有相似性。声子谱计算和第一性原理分子动力学模拟也表明,这些氦-水化合物在动力学上也是稳定的。剑桥大学的合作者Chris Pickard教授等人用他们的随机搜索方法研究了氦-水化合物,完全验证了孙建教授课题组的结果。
图1:氦-水化合物的能量稳定性和晶体结构。
- 氦-水化合物在高温高压下的熔化和动力学行为
随后,他们用第一性原理分子动力学详细研究了氦水化合物在高温高压下的动力学行为,发现了非常有意思的结果。他们发现,在90GPa左右开始的动力学模拟中,在较低温度下He2H2O化合物保持着固态晶格(所有原子的扩散系数为零,如图2 a, d, g所示),当温度升高到2000 K时,氢和氧原子仍然保持着固态冰的子晶格结构,但氦原子已经开始扩散(扩散系数不为零,并且氦原子之间的轨迹已经开发交叠,如图2 b, e, h所示),他们将这个相命名为SI-I相。接着,当温度升高到2300 K时,固态冰的子晶格结构也被破坏,其中的氢原子也和氦原子一样开始扩散,而剩下氧原子却仍然保持着固态晶格结构,图2 c, f, i中可以很明显地看到氢和氦的轨迹都已经开始交叠到一起,他们将这个相命名为SI-II相。并且可以注意到虽然在一般情况下液体中质量大的原子运动速度小,但是在这个SI-II相中,氦原子的扩散系数大于氢原子(如图2 c, f, i)。这是因为氢氧原子之间形成了共价键,而氦原子与氢氧之间则由范德瓦尔斯相互作用结合,范德瓦尔斯相互作用远小于共价键,所以随着温度升高,范德瓦尔斯相互作用首先被破坏,而动态的共价作用阻碍了氢原子的扩散行为,使得氢原子的扩散系数比氦原子更低。当温度高于2500K以后,所有原子都发生扩散,完全成为液态。
图2:在不同温度下,He2H2O晶体中氧原子(红色),氢原子(绿色)和氦原子(蓝色)的运动行为。(a-c)均方位移反应原子的运动方式,斜率等于零表示固态行为,斜率大于零表示液态行为。(d-i)实空间中,各种原子的运动轨迹。为了方便展示,氢原子和氦原子的轨迹分别单独置于氧原子轨迹中。
- 压强-温度相图
基于不同原子的运动行为,他们构建了一个氦水化合物的压强-温度相图(如图3)。在介于固相和液相之间,他们找到了两个新的超离子态区域(SI-I和SI-II),包括氦原子扩散而水分子相对固定的超离子I相(SI-1),以及氦与氢都扩散而氧原子相对固定的超离子II相(SI-II)。另外,相对于纯水的超离子态区域(白色虚线),他们新发现的相边界延伸到了低压区域,接近常压。这说明氦的插入将极大降低实现超离子态的实验难度。最后,他们还对动力学模拟中的径向分布函数,核量子效应等多个方面进行了详细讨论。分析表明,核量子效应或许对相边界有影响,但对超离子态的存在没有太大影响。
图3:理论预言的氦水化合物的温度压强相图。不同的标志代表不同的物态,蓝色圆圈表示固体,浅蓝色正方形表示氦原子在固态冰晶格中自由扩散的超离子态(SI-I相),绿色菱形表示氦原子和氢原子在固态氧原子晶格中自由扩散的超离子态(命名为SI-II相),黄色三角形表示液态。零温下,氦水化合物在55 GPa时从相转变成相,红色虚线表示二者之间的相边界。白色虚线表示纯水中的超离子态区域,绿色和蓝色实线分别表示天王星和海王星的等焓线。
这项工作发现了新的氦-水化合物,并且发现氦-水化合物在高温高压下的多种超离子态。他们的这个发现将为人们重新认识氦在高压下的物理化学性质,固体的熔化过程和新物态,以及天王星和海王星这类天体的结构演化提供重要的理论参考。
值得一提的是,孙建教授课题组自主开发的机器学习辅助的晶体结构搜索方法[K. Xia, H. Gao et al., Sci. Bull. 63, 817 (2018) (封面文章)]为本项目的开展提供了坚实的基础。该方法已被成功应用于寻找多个体系的高压结构和设计功能材料。 [Phys. Rev. B 98, 174112 (2018); Phys. Rev. B 98, 144105 (2018); Phys. Rev. B 99, 165119 (2019); J. Phys. Chem. C 123, 10205 (2019)]
南京大学物理学院孙建教授课题组的博士生刘聪、高豪为文章共同第一作者,孙建教授和王慧田教授为共同通讯作者。南京大学物理学院邢定钰院士深入指导,剑桥大学Chris Pickard教授和Richard Needs教授等人合作参与了本项工作。该项工作是南京微结构协同创新中心的最新研究成果。该工作得到了科技部重点研发计划、国家自然科学基金、江苏省自然科学基金杰出青年基金、中央高校基本业务费等经费的支持。计算工作主要在南京微结构协同创新中心高性能计算中心、南京大学高性能计算中心、广州超算中心“天河二”和剑桥大学等地的超级计算机上进行。(刘聪)
文章详情:
Cong Liu, Hao Gao, Yong Wang, Richard J. Needs, Chris J. Pickard, Jian Sun*, Hui-Tian Wang*, Dingyu Xing, “Multiple superionic states in helium-water compounds”, Nature Physics (2019). DOI: 10.1038/s41567-019-0568-7 ;