George Fytas
Department of Materials Science & Technology of the University of Crete
地点:唐仲英楼A213
时间:2018-05-29 16:00
Phononic crystals, i.e. composite materials in which a periodic distribution of elastic parameters facilitates control of the propagation of phonons, hold the promise to enable transformative material technologies in areas ranging from acoustic and thermal cloaking to thermoelectric devices. Realizing these opportunities requires strategies to deliberately ‘engineer’ the phononic band structure of materials in the frequency range of interest. Phononic crystals, the acoustic equivalents of the photonic crystals, are controlled by a larger number of material parameters, as phonon cannot propagate in vacuum. The study of hypersonic phononic crystals (hPnC) imposes substantial demand on fabrication and characterization techniques. Colloid and polymer science offer methods to create novel materials that possess periodic variations of density and elastic properties at mesoscopic length scales commensurate with the wave length of hypersonic phonons and hence photons of the visible light. The key quantity is the dispersion ω(k) of high frequency (GHz) acoustic excitations with wave vector k which is measured by the noninvasive high resolution spontaneous Brillouin light scattering.
George Fytas is professor of Physical Chemistry in the Department of Materials Science & Technology of the University of Crete, affiliated member of IESL/FORTH and External Member of the Max Planck Institute for Polymer Research in Mainz. George Fytas has received the BS in Chemistry Department of the University of Athens and the PhD with from the Technical University of Hannover in Germany. He performed his postdoc research in SUNY at Stony Brook in USA and received his habilitation from the University of Bielefeld in Germany. George Fytas trained 31 PhD students and 14 postdocs who all have successful carriers worldwide. He published over 275 peer reviewed scientific articles (Science, Nature (Materials,-Nanotechnology,-Chemistry,-Communications), Nanoletters, Angewandte Chemie JACS, ACS Nano, Adv. Mater, PRL), one edited book and 11 reviews in books. His published work has received more than 9100 citations (HI: 49).