近日,南京大学现代工程与应用科学学院朱嘉教授课题组在高效界面光热-蒸汽转换上取得最新进展。该工作以《Enhancement of interfacial solar vapor generation by environmental energy》为题发表在Cell press旗下期刊Joule上(DOI: https://doi.org/10.1016/j.joule.2018.04.004)。课题组博士研究生李秀强与硕士研究生李金磊为该论文的共同第一作者,朱嘉教授为论文的通讯作者,该工作得到了阿联酋哈利法科技大学张铁军教授课题组的帮助和支持,同时也得到了南京大学祝世宁院士的指导和支持。

        界面光热转换作为新兴太阳能技术因其高转换效率及在海水淡化、水处理等诸多领域的应用前景,引起学界、产业界的广泛关注。过去一段时间的发展,诸多工作聚焦于通过材料结构设计、光学调控、热学管理以及水通道的设计来提高光-蒸汽的转化效率。然而业界通常认为因为吸收体向环境的能量耗散(包括光学与热学损耗)不可避免,因此最大的蒸发量会受限于太阳能功率密度而存在上限(按照标准太阳能谱计算,~1.47L/m2/h),光-蒸汽产生的净蒸发量会趋近但无法超过这一上限。

(科学技术处 摄影)

图1. 传统界面光蒸汽转化 (A) 与环境能量增强的界面光蒸汽转化(B)对比示意图

        针对这一问题,朱嘉教授团队提出了新的材料结构设计思路,可以使环境从能源耗散方变成能源的供给方;吸收体从环境有净能量输入,从而有效增强蒸发,打破传统认为的蒸发极限,即100%太阳能利用情况下的蒸发量。要实现这一环境能量增强的光-蒸汽产生,需要在宏观尺度上设计了一系列不连续的柱状蒸发体。这些不连续的蒸发体可为蒸汽逸散提供有效通道,增大蒸发体的有效蒸发面积,同时一维水通道的设计可有效降低热损失。在微观尺度上,利用具有多级连通孔结构的亲水纤维素膜作为包覆层包覆在柱状蒸发体外来进一步增大有效蒸发面积;同时利用具有高吸光系数的碳纳米颗粒沉积在纤维素膜上作为吸收体来充分利用太阳能。通过精细结构调控,最终可实现在正常光照条件下,吸收体的平均温度低于环境温度(如图1)。在此情况下,环境能量可有效增强蒸发,使得蒸发量可以超过传统认为极限,即100%太阳能利用下的蒸发量。

        作为应用示例,该工作展示了这种环境能量增强光-蒸汽转化装置可大幅提升对工业污水(如含重金属、染料分子的废水)的处理能力。此工作不仅为突破传统认知蒸发极限提出了一种新的思路和方式,同时为高效的太阳能光蒸汽技术的应用迈出坚实一步。

        这一工作受到国家重点基础研究计划,国家自然科学基金委群体及面上项目,中央高校基本科研业务费专项基金,江苏省优势学科等项目的支持。


      (现代工程与应用科学学院 科学技术处)